AI MONSTER
  • AI MONSTER ($AIMON) Overview
  • AI-Generated Monsters: Technical Core (DeepSeek & Generative AI)
    • 2.1 Monster Design AI Architecture
    • 2.2 Reinforcement Learning with Human Feedback (RLHF)
    • 2.3 Multi-modal AI Training Framework
    • 2.4 FLUX Integration
    • 2.5 NFT Integration for AI Monsters
    • 2.5 Advanced NFT Minting Process
    • 2.6 Upgrading and Evolution Mechanisms
    • 2.7 GameFi and Film Production Integration
  • Solana & $AIMON Token Economy
    • 3.1 Why Solana?
    • 3.2 $AIMON Token Utility
  • AI MONSTER Use Cases
    • 4.1 Gaming & GameFi
      • 4.1.1 AI-Generated Game Entities
      • 4.1.2 Monster Training and Personalization
      • 4.1.3 Play-to-Earn (P2E) Mechanics
      • 4.1.4 AI Evolution System
    • 4.2 Film & Animation
      • 4.2.1 High-Quality CG Monster Generation
      • 4.2.2 AI-Driven Simulations for Enhanced Visual Effects
      • 4.2.3 Dynamic Scene Generation and Integration
      • 4.2.4 Workflow Integration and Production Efficiency
  • Roadmap & Future Plans
    • 5.1 Q1 - Q2 2025
    • 5.2 Q3 - Q4 2025
    • 5.3 Long-Term Vision (2026 & Beyond)
  • Join the AI MONSTER Ecosystem
Powered by GitBook
On this page
  1. AI MONSTER Use Cases
  2. 4.2 Film & Animation

4.2.3 Dynamic Scene Generation and Integration

AI MONSTER's technology allows for the deep integration of monsters with their environments, creating cohesive and immersive scenes.

  1. Procedural Environment Generation

  2. AI-driven creation of entire ecosystems and habitats suited to the monsters.

  3. Dynamic adjustment of environments based on monster characteristics and story requirements.

  4. Lighting and Atmosphere Adaptation

  5. Automatic adjustment of scene lighting to enhance the mood and highlight monster features.

  6. Generation of atmospheric effects (fog, particles, etc.) that interact realistically with monsters.

  7. Composite Shot Optimization

  8. AI analysis of live-action footage to determine optimal monster placement and interaction.

  9. Real-time adjustment of monster renders to match plate photography lighting and camera movement.

Example: AI-Powered Scene Composition System

import cv2
import numpy as np
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation

class AISceneCompositor:
    def __init__(self):
        self.processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b5-finetuned-ade-640-640")
        self.model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-ade-640-640")

    def analyze_plate(self, image_path):
        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        inputs = self.processor(images=image, return_tensors="pt")
        outputs = self.model(**inputs)
        logits = outputs.logits.squeeze()
        segmentation = logits.argmax(dim=0).numpy()
        return image, segmentation

    def find_monster_placement(self, segmentation, monster_size):
        # Simplified placement strategy - find the largest non-sky area
        ground = (segmentation != self.model.config.id2label['sky'])
        kernel = np.ones((monster_size, monster_size), np.uint8)
        possible_placements = cv2.dilate(ground.astype(np.uint8), kernel)
        best_location = np.unravel_index(possible_placements.argmax(), possible_placements.shape)
        return best_location

    def adjust_monster_lighting(self, monster_render, plate_image, location):
        # Simplified lighting adjustment - match average color around placement
        y, x = location
        surrounding = plate_image[y-50:y+50, x-50:x+50]
        avg_color = surrounding.mean(axis=(0, 1))
        adjusted_render = monster_render * avg_color / 255
        return adjusted_render.astype(np.uint8)

    def composite_shot(self, plate_path, monster_render_path):
        plate, segmentation = self.analyze_plate(plate_path)
        monster = cv2.imread(monster_render_path, cv2.IMREAD_UNCHANGED)
        
        placement = self.find_monster_placement(segmentation, monster.shape[0])
        adjusted_monster = self.adjust_monster_lighting(monster, plate, placement)
        
        y, x = placement
        h, w = monster.shape[:2]
        roi = plate[y:y+h, x:x+w]
        
        # Simple alpha compositing
        alpha = adjusted_monster[:, :, 3] / 255.0
        for c in range(3):
            roi[:, :, c] = roi[:, :, c] * (1 - alpha) + adjusted_monster[:, :, c] * alpha
        
        plate[y:y+h, x:x+w] = roi
        return plate

# Usage
compositor = AISceneCompositor()
composite = compositor.composite_shot("beach_scene.jpg", "sea_monster_render.png")
cv2.imwrite("final_composite.jpg", cv2.cvtColor(composite, cv2.COLOR_RGB2BGR))
Previous4.2.2 AI-Driven Simulations for Enhanced Visual EffectsNext4.2.4 Workflow Integration and Production Efficiency

Last updated 2 months ago