AI MONSTER
  • AI MONSTER ($AIMON) Overview
  • AI-Generated Monsters: Technical Core (DeepSeek & Generative AI)
    • 2.1 Monster Design AI Architecture
    • 2.2 Reinforcement Learning with Human Feedback (RLHF)
    • 2.3 Multi-modal AI Training Framework
    • 2.4 FLUX Integration
    • 2.5 NFT Integration for AI Monsters
    • 2.5 Advanced NFT Minting Process
    • 2.6 Upgrading and Evolution Mechanisms
    • 2.7 GameFi and Film Production Integration
  • Solana & $AIMON Token Economy
    • 3.1 Why Solana?
    • 3.2 $AIMON Token Utility
  • AI MONSTER Use Cases
    • 4.1 Gaming & GameFi
      • 4.1.1 AI-Generated Game Entities
      • 4.1.2 Monster Training and Personalization
      • 4.1.3 Play-to-Earn (P2E) Mechanics
      • 4.1.4 AI Evolution System
    • 4.2 Film & Animation
      • 4.2.1 High-Quality CG Monster Generation
      • 4.2.2 AI-Driven Simulations for Enhanced Visual Effects
      • 4.2.3 Dynamic Scene Generation and Integration
      • 4.2.4 Workflow Integration and Production Efficiency
  • Roadmap & Future Plans
    • 5.1 Q1 - Q2 2025
    • 5.2 Q3 - Q4 2025
    • 5.3 Long-Term Vision (2026 & Beyond)
  • Join the AI MONSTER Ecosystem
Powered by GitBook
On this page
  1. AI-Generated Monsters: Technical Core (DeepSeek & Generative AI)

2.3 Multi-modal AI Training Framework

representations:

  1. Text-to-Image: Uses DALL-E 2 fine-tuned on monster concepts for initial visual creation.

  2. Image-to-3D: Employs a custom Neural Radiance Field (NeRF) model to generate 3D representations from 2D images.

  3. Physics-based Simulations: Utilizes PyBullet for real-time physics simulations of monster movements and interactions.

Example of multi-modal integration:

from models.dalle2 import DALLE2
from models.nerf import MonsterNeRF
from simulations.pybullet_wrapper import PhysicsSimulation

def create_interactive_monster(text_description):
    # Generate 2D image
    dalle_model = DALLE2.load("monster_dalle.pth")
    monster_image = dalle_model.generate(text_description)

    # Convert to 3D
    nerf_model = MonsterNeRF.load("monster_nerf.pth")
    monster_3d = nerf_model.image_to_3d(monster_image)

    # Add physics
    physics_sim = PhysicsSimulation()
    physics_sim.add_monster(monster_3d)

    return physics_sim

# Usage
interactive_monster = create_interactive_monster("A six-legged cybernetic monster with plasm
Previous2.2 Reinforcement Learning with Human Feedback (RLHF)Next2.4 FLUX Integration

Last updated 2 months ago