AI MONSTER
  • AI MONSTER ($AIMON) Overview
  • AI-Generated Monsters: Technical Core (DeepSeek & Generative AI)
    • 2.1 Monster Design AI Architecture
    • 2.2 Reinforcement Learning with Human Feedback (RLHF)
    • 2.3 Multi-modal AI Training Framework
    • 2.4 FLUX Integration
    • 2.5 NFT Integration for AI Monsters
    • 2.5 Advanced NFT Minting Process
    • 2.6 Upgrading and Evolution Mechanisms
    • 2.7 GameFi and Film Production Integration
  • Solana & $AIMON Token Economy
    • 3.1 Why Solana?
    • 3.2 $AIMON Token Utility
  • AI MONSTER Use Cases
    • 4.1 Gaming & GameFi
      • 4.1.1 AI-Generated Game Entities
      • 4.1.2 Monster Training and Personalization
      • 4.1.3 Play-to-Earn (P2E) Mechanics
      • 4.1.4 AI Evolution System
    • 4.2 Film & Animation
      • 4.2.1 High-Quality CG Monster Generation
      • 4.2.2 AI-Driven Simulations for Enhanced Visual Effects
      • 4.2.3 Dynamic Scene Generation and Integration
      • 4.2.4 Workflow Integration and Production Efficiency
  • Roadmap & Future Plans
    • 5.1 Q1 - Q2 2025
    • 5.2 Q3 - Q4 2025
    • 5.3 Long-Term Vision (2026 & Beyond)
  • Join the AI MONSTER Ecosystem
Powered by GitBook
On this page
  1. AI-Generated Monsters: Technical Core (DeepSeek & Generative AI)

2.2 Reinforcement Learning with Human Feedback (RLHF)

To fully utilize the capabilities of DeepSeek R1 in our RLHF system, we've enhanced our approach:

  1. Behavior Policy Network: Now uses a hybrid architecture combining DeepSeek R1 with a specialized transformer for monster behavior modeling.

  2. Human Feedback Collection: Expanded to include more nuanced feedback on monster behaviors, storylines, and game balance.

  3. Reward Modeling: Incorporates DeepSeek R1's reasoning capabilities to better interpret and model human preferences.

  4. Policy Optimization: Uses a modified version of Proximal Policy Optimization (PPO) that can handle the complex output space of DeepSeek R1.

Example of enhanced RLHF training loop:

import torch
from models.deepseek_policy_network import DeepSeekPolicyNetwork
from models.reward_model import DeepSeekRewardModel
from rlhf.advanced_ppo import AdvancedPPOTrainer

def train_monster_behavior(initial_policy, reward_model, human_feedback_data):
    policy = DeepSeekPolicyNetwork.load(initial_policy)
    reward_model = DeepSeekRewardModel.load(reward_model)
    ppo_trainer = AdvancedPPOTrainer(policy, reward_model)

    for epoch in range(100):
        trajectories = policy.generate_complex_trajectories(num_trajectories=1000)
        human_ratings = collect_detailed_human_feedback(trajectories)
        reward_model.update(trajectories, human_ratings)
        
        ppo_trainer.train_iteration(trajectories)
        
        if epoch % 10 == 0:
            policy.save(f"deepseek_monster_policy_epoch_{epoch}.pth")

    return policy

# Usage
trained_policy = train_monster_behavior("initial_deepseek_policy.pth", "deepseek_reward_model.pth", human_feedback_data)

This enhanced RLHF system leverages DeepSeek R1's advanced language understanding and generation capabilities to create more sophisticated and contextually aware monster behaviors.

Previous2.1 Monster Design AI ArchitectureNext2.3 Multi-modal AI Training Framework

Last updated 2 months ago